Proposed Changes to the WHO Classification of Acute Leukemias and Myeloid Disorders

Daniel A. Arber, MD
Ronald F. Dorfman, MBBch, FRCPat
Professor of Hematopathology
Stanford, California
Revision of the 4th edition

- Current “blue book” is part of the 4th edition series, starting in 2008
- Needs updating, but WHO has not completed all 4th edition books and will not allow 5th edition to begin until entire 4th edition series is complete
- Will allow an on-line and printed revision of the 4th edition
Clinical Advisory Committee

• March 31 and April 1, 2014, Chicago, IL
 – Organized by Jim Vardiman and Michelle LeBeau
 – 50 invited participants (pathologists, cytogeneticists, hematologists) and for acute leukemia and myeloid neoplasms topics
 – 50 invited participants for lymphoid neoplasms

• Acute Leukemia and Myeloid Neoplasms CAC Co-Chairs Clara Bloomfield and Mario Cazzola

• A series of questions were proposed by the co-chairs and involved pathologists for discussion and vote by the CAC
Lymphoid CAC
Myeloid CAC
WHO Classification of Acute Leukemia and Myeloid Neoplasms (4th Edition; 2008)

- Myeloproliferative neoplasms
- Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1
- Myelodysplastic/myeloproliferative neoplasms
- Myelodysplastic syndromes
- Acute myeloid leukemia and related precursor neoplasms
- Acute leukemias of ambiguous lineage
- Precursor lymphoid neoplasms
WHO Classification of Acute Leukemia and Myeloid Neoplasms (4th Edition; 2008)

- Myeloproliferative neoplasms
- Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1
- Myelodysplastic/myeloproliferative neoplasms
- Myelodysplastic syndromes
- Acute myeloid leukemia and related precursor neoplasms
- Acute leukemias of ambiguous lineage
- Precursor lymphoid neoplasms
Myeloproliferative Neoplasms

• Chronic myelogenous leukemia, $BCR-ABL1$ positive
• Chronic neutrophilic leukemia
• Polycythemia vera
• Primary myelofibrosis
• Essential thrombocythemia
• Chronic eosinophilic leukemia
• Mastocytosis
• Myeloproliferative neoplasm, unclassifiable
Chronic Myeloid Leukemia, *BCR-ABL1* positive

- Mostly unchanged
- **Definition of accelerated phase**
 - Will include development of TKI/therapy resistance
- **Definition of lymphoid blast crisis**
 - Any lymphoblast population in the blood should raise concern for blast crisis
 - >5% (aberrant) lymphoblasts in the marrow should be considered blast crisis
Chronic Neutrophilic Leukemia

- Rare disorder of sustained neutrophilia without reactive cause or evidence of other MPN
- Mutations
 - CSF3R T6181
 - Mutations disrupt the JAK-STAT pathway and are considered disease defining for CNL
 - SETBP1, ASXL1
 - Frequent, but not disease specific

From Gotlib J. The Hematologist Sept 2013
Polycythemia Vera criteria (2008)

- Increased red cell production
 - Hemoglobin >18.5/16.5 g/dL in men/women
 - Hemoglobin >17/15 g/dL in men/women, with sustained increase of 2 g/dL over baseline
 - Increased red cell mass (>25% above normal)
 - Hemoglobin or hematocrit >99th percentile

- JAK2 mutation

 1. Bone marrow showing typical PV histology
 2. Decreased serum EPO levels
 3. Endogenous erythroid colony formation

Minor
Proposed revision to PV criteria

• Increased red cell production
 – Hemoglobin >16.5/16.0 g/dL in men/women or hematocrit >49/48% in men/women
 – Hemoglobin >17/15 g/dL in men/women, with sustained increase of 2 g/dL over baseline
 – Increased red cell mass (>25% above normal)
 – Hemoglobin or hematocrit >99%le

• Bone marrow showing typical PV histology

• JAK2 mutation

 1. Decreased serum EPO levels
 2. Endogenous erythroid colony formation
Primary Myelofibrosis and Essential Thrombocythemia

- Addition of CALR mutations to diagnostic criteria for both and MPL for ET
- Lower fibrosis requirement for prefibrotic/early PMF
 - Provide more information on the ddx of prePMF vs ET
Myeloproliferative Neoplasms

- Chronic myeloid leukemia, *BCR-ABL1* positive
- Chronic neutrophilic leukemia
- Polycythemia vera
- Primary myelofibrosis
- Essential thrombocythemia
- Chronic eosinophilic leukemia
- Mastocytosis
- Myeloproliferative neoplasm, unclassifiable
Myelodysplastic Syndromes (2008)

- Refractory cytopenia with unilineage dysplasia
 - Refractory anemia
 - Refractory neutropenia
 - Refractory thrombocytopenia
- Refractory anemia with ring sideroblasts
- Refractory cytopenia with multilineage dysplasia
- Refractory anemia with excess blasts
 - RAEB-1
 - RAEB-2
- Myelodysplastic syndrome with isolated del(5q)
- Myelodysplastic syndrome, unclassifiable
- Childhood myelodysplastic syndrome
 - Refractory cytopenia of childhood
Myelodysplastic Syndromes – Revised Terminology

- Refractory cytopenia with unilineage dysplasia
 - Refractory anemia
 - Refractory neutropenia
 - Refractory thrombocytopenia
- Refractory anemia with ring sideroblasts
- Refractory cytopenia with multilineage dysplasia
- Refractory anemia with excess blasts
 - RAEB-1
 - RAEB-2
- Myelodysplastic syndrome with isolated del(5q)
- Myelodysplastic syndrome, unclassifiable
- Childhood myelodysplastic syndrome
 - Refractory cytopenia of childhood
- MDS with single lineage dysplasia
- MDS with ring sideroblasts with unilineage dysplasia
- MDS with ring sideroblasts with multilineage dysplasia
- MDS with multilineage dysplasia
- MDS with excess blasts
 - With excess blasts-1
 - With excess blasts-2
- MDS with isolated del(5q)
- MDS, unclassifiable
- Childhood myelodysplastic syndrome
 - Refractory cytopenia of childhood
MDS with ring sideroblasts

- Frequent association with mutations of \textit{SF3B1} and a favorable prognosis with low risk of transformation to acute leukemia
- \(>15\%\) ring sideroblasts (among erythroid precursors), \textit{or}
- \(>5\%\) in the presence of an \textit{SF3B1} mutation
- Blast cell increases exclude this diagnosis
 - If multilineage dysplasia without a blast cell increase is present, case is classified as MDS with multilineage dysplasia with ring sideroblasts
Ring Sideroblasts and \textit{SF3B1} Mutations in MDS

Morphologic Review

- \textgreater{}5\% and \textless{}20\% Marrow Blasts
- \textless{}1\% Blood and \textless{}5\% Marrow Blasts

MDS with excess blasts
Ring Sideroblasts and SF3B1 Mutations in MDS

- **<1% Blood and <5% Marrow Blasts**
 - Iron Stain
 - **>15%**
 - **<15%**
 - **5-14%**
 - SF3B1
 - No
 - **<5%**
 - Single lineage
 - Dysplasia
 - Yes
 - Multilineage
 - Yes
 - MDS with ring sideroblasts (and unilineage dysplasia)
 - No
 - MDS with ring sideroblasts and multilineage dysplasia
 - MDS with single lineage dysplasia
 - MDS with multilineage dysplasia
MDS with Isolated del(5q)
(5q-minus Syndrome)

• Currently restricted to del(5q) as the only abnormality
• Will now allow a second (non-high risk; i.e. -7) cytogenetic abnormality
• Cases with >2 abnormalities, multilineage dysplasia or increase blasts will not qualify for this category
• Recommend TP53 mutation assessment or p53 staining

Germing Leukemia 26:1286, 2012;
Erythroid/myeloid leukemia is now considered as MDS with excess blasts

• Prior definition of erythroleukemia (erythroid/myeloid type) in AML, NOS required ≥50% marrow erythroid precursors and ≥20% myeloblasts among non-erythroid cells
• These cases will now be classified as MDS based on the total blast cell count

Evaluation of Dysplastic Marrows with over 50% Erythroids

- >50% Marrow Erythroids
 - Determine Absolute Blast Cell Count
 - <5%
 - 5-19%
 - ≥20%
 - AML
 - MDS with excess blasts
 - Iron Stain Dysplasia
 - MDS with unilineage dysplasia (+/- ring sideroblasts)
 - MDS with multilineage dysplasia (+/- ring sideroblasts)
WHO Classification of Acute Leukemia and Myeloid Neoplasms (4th Edition; 2008)

- Myeloproliferative neoplasms
- Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1
- Myelodysplastic/myeloproliferative neoplasms
- Myelodysplastic syndromes
- Acute myeloid leukemia and related precursor neoplasms
- Acute leukemias of ambiguous lineage
- Precursor lymphoid neoplasms
Familial Myeloid Neoplasms

- Familial MDS/AML is likely more prevalent than realized
- Familial MDS/AML associated with germline mutations
 - *CEBPA* (AML)
 - *SRP72* (AML)
 - *DDX41* (MDS/AML)
- Familial hematologic malignancies associated with platelet disorders and gene mutations
 - *RUNX1* (AML)
 - *ANKRD26* (AML)
 - *ETV6* (AL and solid tumors)
- Familial MDS/AML associated with other organ dysfunction
 - *GATA2* (MDS/AML)
 - *TERC/TERT*
 - DNA repair gene syndromes
 - Tumor suppressor gene syndromes

WHO Classification of Precursor Myeloid and Lymphoid Neoplasms (4th Edition)

Acute myeloid leukemia (AML) and related precursor neoplasms
- AML with recurrent genetic abnormalities
 - AML with t(8;21) (q22;q22) (*RUNX1-RUNX1T1*)
 - AML with inv(16)(p13.1q22) or t(16,16) (p13.1;q22) (*CBFB-MYH11*)
 - Acute promyelocytic leukemia with t(15;17)(q24.1;q21.1) (*PML-RARA*)
 - AML with t(9;11)(p22;q23) (*MLLT3-MLL*)
 - AML with t(6;9)(p23;q34) (*DEK-NUP214*)
 - AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2) (*RPN1-EVI1*)
 - AML (megakaryoblastic) with t(1;22)(p13;q13) (*RBM15-MKL1*)
 - Provisional entity: AML with mutated *NPM1*
 - Provisional entity: AML with mutated *CEBPA*
- AML with myelodysplasia-related changes
- Therapy-related myeloid neoplasms
- AML not otherwise specified
 - AML minimally differentiated
 - AML without maturation
 - AML with maturation
 - Acute myelomonocytic leukemia
 - Acute monoblastic and monocytic leukemia
 - Acute erythroid leukemia
 - Acute megakaryocytic leukemia
 - Acute basophilic leukemia
 - Acute panmyelosis with myelofibrosis
 - Myeloid sarcoma
 - Myeloid proliferations related to Down syndrome
 - Blastic plasmacytoid dendritic cell neoplasm

Acute leukemias of ambiguous lineage
- Acute undifferentiated leukemia
- Mixed phenotype acute leukemia with t(9;22)(q34;q11.2); *BCR-ABL1*
- Mixed phenotype acute leukemia with t(v;11q23); *MLL* rearranged
- Mixed phenotype acute leukemia, B/myeloid, NOS
- Mixed phenotype acute leukemia, T/myeloid, NOS
- Mixed phenotype acute leukemia, NOS, rare types
- Other ambiguous lineage leukemias

Precursor lymphoid neoplasms
- B-lymphoblastic leukemia/lymphoma, not otherwise specified
- B-lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities
 - B-lymphoblastic leukemia/lymphoma with t(v;11q23)(*MLL*)
 - B-lymphoblastic leukemia/lymphoma with t(12;21)(p13;q22) (*ETV6-RUNX1*)
 - B-lymphoblastic leukemia/lymphoma with t(5;14)(q31;q32) (*IL3-IGH*)
 - B-lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3) (*TCF3-PBX1*)
 - B-lymphoblastic leukemia/lymphoma with hyperdiploidy
 - B-lymphoblastic leukemia/lymphoma with hypodiploidy
- T-lymphoblastic leukemia/lymphoma
2008 WHO Classification of AML

- AML with recurrent genetic abnormalities
 - AML with t(8;21) (q22;q22) (RUNX1-RUNX1T1)
 - AML with inv(16)(p13.1q22) or t(16,16) (p13.1;q22) (CBFB-MYH11)
 - Acute promyelocytic leukemia with t(15;17)(q24.1;q21.1) (PML-RARA)
 - AML with t(9;11)(p22;q23) (MLLT3-MLL)
 - AML with t(6;9)(p23;q34) (DEK-NUP214)
 - AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2) (RPN1-EVI1)
 - AML (megakaryoblastic) with t(1;22)(p13;q13) (RBM15-MKL1)
 - Provisional entity: AML with mutated NPM1
 - Provisional entity: AML with mutated CEBPA

- AML with myelodysplasia-related changes
- Therapy-related myeloid neoplasms
- AML, not otherwise specified
 - AML minimally differentiated
 - AML without maturation
 - AML with maturation
 - Acute myelomonocytic leukemia
 - Acute monoblastic and monocytic leukemia
 - Acute erythroid leukemia
 - Acute megakaryocytic leukemia
 - Acute basophilic leukemia
 - Acute panmyelosis with myelofibrosis

- Myeloid sarcoma
- Myeloid proliferations related to Down syndrome
- Blastic plasmacytoid dendritic cell neoplasm
Precursor Lymphoid Neoplasms (2008)

- B-lymphoblastic leukemia/lymphoma, not otherwise specified
- B-lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities
 - B-lymphoblastic leukemia/lymphoma with t(v;11q23)(MLL)
 - B-lymphoblastic leukemia/lymphoma with t(12;21)(p13;q22) (ETV6-RUNX1)
 - B-lymphoblastic leukemia/lymphoma with t(5;14)(q31;q32) (IL3-IGH@
 - B-lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3) (TCF3-PBX1)
- T-lymphoblastic leukemia/lymphoma
Since 2008

- Classification systems move slowly, but science does not
- Mutations
- Protein expression
- Methylation
Since 2008

• Classification systems move slowly, but science does not
• Next generation sequencing (NGS) has resulted in an explosion of new information
Advances in ALL

- **IKZF1** deletions
 - at 7p12 encodes the zinc finger transcription factor IKAROS
 - Associated with gene expression signature similar to Ph+ ALL
 - Very poor prognosis independent of age, WBC count and genetic subtype

- **JAK** mutations
- **CRLF2** translocations

Advances in ALL

- **IKZF1** deletions
- **JAK** mutations
 - **JAK1**, **JAK2** and **JAK3** mutations found in 10.7% of Ph-negative B-ALL (80% **JAK2**)
 - Mutations associated with deletion of **IKZF1** and **CDKN2A/B** and a Ph+ ALL gene expression profile
 - Very poor prognosis of **IKZF1** deleted/**JAK** mutated cases
- **CRLF2** translocations

Mullighan et al. PNAS 106;9414, 2009
Advances in ALL

- **IKZF1** deletions
- **JAK** mutations
- **CRLF2** translocations
 - Found in 7-14% of B-ALLs and in 53% of Down-syndrome associated ALL
 - Located at Xp22.3/Yp11.3
 - 62% are translocations with **IGH**
 - Associated with
 - **JAK1** and **JAK2** mutations
 - **IKZF1** deletions
 - Hispanic ethnicity
 - Very poor prognosis

Mullighan et al. Nat Genet 41:1243, 2009
Harvey et al. Blood 115:5312, 2010
BCR-ABL1-like B-ALL
(B-ALL with Translocations Involving Tyrosine Kinases or Cytokine Receptors)

- *BCR-ABL1*-like B-ALL is a high risk ALL with a gene expression profile similar to that of *BCR-ABL1*+ ALL
- Accounts for 10% of pediatric and 25% of adult ALL; poor clinical outcomes; may be amenable to targeted therapy
- Need to establish clear diagnostic criteria
 - *CRLF2* translocations
 - Usually show increased expression of CRLF2 by flow cytometry analysis
 - Some have activating mutations or rearrangements of genes, such as *ABL1, ABL2, JAK2, PDGFRB, NTRK3, TYK2, CSF1R*, and/or *EPOR*
 - Diagnostic significance of deletions/mutations of *IKZF1, CDKN2A/B, JAK1* less clear
 - The full spectrum of genetic changes is still being investigated

ALL with iAMP21

- Intrachromosomal amplification of chromosome 21 (iAMP21) accounts for about 2% of B-ALL
- Generally in older children (median age 9 years) with lower WBC count
- Adverse outcomes when treated with standard risk therapy; but improved when treated as high risk ALL
- Presence of 5 or more copies of RUNX1 on a single cell or 3 or more extra copies on a single abnormal chromosome 21
- Reliably detected by FISH for RUNX1 and confirmed by cytogenetics

Harrison et al. Leukemia 28:1015, 2014
B-lymphoblastic leukemia/lymphoma with hypodiploidy

- Low hypodiploid (32-39 chromosomes) and near haploid (24-31 chromosomes) B-ALL have a worse prognosis than near diploid cases and are likely distinct entities.
- Near haploid ALL is often associated with RAS and receptor TK signaling mutations.
- >90% of low hypodiploid cases have TP53 mutations and often have alterations of IKZF2 and RB1.
- 43% of low hypodiploid ALL have germline TP53 mutations.

Early T-Precursor Acute Lymphoblastic Leukemia (ETP-ALL)

- Early T-Precursor (ETP) ALL comprises 10-15% of T-ALL
- Defined immunophenotypically by expression of cCD3, CD7, low CD5, but no CD1a, CD4 or CD8
 - Expresses CD34 and myeloid-related antigens (CD117, CD33, or CD13) but not MPO
- Thought to arise from an early progenitor cell with lineage plasticity that may be more closely related to human stem cells than to early T-cell precursors
- Molecular genetics
 - Increase in AML-associated mutations
 - Rare NOTCH pathway (T-ALL-associated) mutations
- Initially considered high risk due to higher rate of induction failure
- Recent COG study showed no outcome difference with current T-ALL therapy

- Wood B, et al. ASH Abstract #1, 2014
Proposed WHO Revisions for ALL

- **B-ALL**
 - *BCR-ABL1*-like B-ALL
 - B-ALL with iAMP21
 - Hypodiploid ALL will be subdivided
 - Near haploid
 - Low hypodiploid
 - Near diploid

- **T-ALL**
 - Early T-Precursor ALL
AML with Multilineage Dysplasia

AML with inv(3) or t(3;3)

AML with t(6;9)

AML with Myelodysplasia-Related Changes

AML, Not Otherwise Categorized

History and/or cytogenetics

NPM1 and CEBPA

AML with mutated NPM1
AML with mutated CEBPA

AML, Not Otherwise Specified
What about new translocations in AML?
AML with *BCR-ABL1*

- Difficult to distinguish from myeloid blast crisis of chronic myelogenous leukemia
 - Few basophils
 - Less splenomegaly
- Deletion of antigen receptors, particularly *IGH*, recently shown to be specific for de novo disease
 - Detection of t(9;22) in only blasts supports diagnosis
- Subset of cases have mutated *NPM1*
- Important to recognize due to presence of targeted (TKI) therapy

Mutations in AML

• Only four mentioned in 2008 WHO
 – Provisional entities
 • NPM1
 • CEPBA
 – Prognostic markers
 • FLT3
 • KIT
Cooperation between mutations in AML pathogenesis

Class I Translocations/Mutations
- FLT3-ITD
- FLT3-TKD
- KIT
- RAS
- PTPN11
- JAK2

Class II Translocations/Mutations
- PML-RARA
- RUNX1-RUNX1T1
- CBFB-MYH11
- MLL fusions
- CEBPA
- NPM1?

AML

proliferation and/or survival advantage; not affecting differentiation

impaired hematopoietic differentiation and subsequent apoptosis

Gilliland and Griffin, Blood 100:1532, 2002 (modified by H. Döhner)
AML with mutated CEBPA

- 7-20% of AMLs have mutations of CEBPA
 - More frequent with normal or intermediate karyotype
- 12.5-47% are single/monoallelic
- Double mutant/biallelic cases (CEBPAdm) predict a favorable prognosis
 - Low frequency of other mutations or other cytogenetic abnormalities

NPM1 and CEBPA Mutations in AML-MRC and Secondary AML

- **Significance of multilineage dysplasia in the presence of NPM1 mutation, a normal karyotype and no history of MDS**
 - MLD found in 74/318 (23%) de novo NPM1 mutated AML
 - No prognostic significance for MLD (Falini et al. Blood 115:3776, 2010)

- **NPM1 mutations in secondary AML**
 - Approximately 16% of AMLs arising from MDS, post therapy or following an MPN or CMML have mutations
 - NPM1 mutation usually not present in original disease
 - Such cases lack the favorable prognosis of de novo AML with mutated NPM1

- **CEBPA mutations**
 - MLD found in 28/108 (25.9%) CEBPA mutated AML patients
 - No significant survival difference in MLD+ and MLD- groups

Döhner et al. Blood 106:3740, 2005
Schnittger et al Leukemia 25:615, 2011
Survival curves of patients up to 60 years with intermediate-risk cytogenetics AML depending on $NPM1$ status and presence of multilineage dysplastic features (MLD)

©2010 by American Society of Hematology
AML with mutated \textit{NPM1} or \textit{CEPBA} and an abnormal karyotype

- Abnormal karyotype identified in 14.7\% of \textit{NPM1} and 26\% of \textit{CEBPA} mutated AML cases
- +8, +4, -Y, del(9q) and +21 most frequent with \textit{NPM1} mutation
- del(9q), del(11q), -Y, +10, +21 most frequent with biallelic \textit{CEBPA} mutation
- del(9q) is currently considered an MDS-related cytogenetic abnormality, but it appears to be unusually common in \textit{NPM1} and \textit{CEBPA} mutated cases
- In this setting, del(9q) does not appear to have prognostic significance

Mutations in AML

<table>
<thead>
<tr>
<th>Gene</th>
<th>Frequency in AML</th>
<th>Reported prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPM1</td>
<td>30-35%</td>
<td>Favorable</td>
</tr>
<tr>
<td>FLT3 ITD</td>
<td>25%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>15-25%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>NRAS/KRAS</td>
<td>15-20%</td>
<td>Neutral</td>
</tr>
<tr>
<td>WT1</td>
<td>10-15%</td>
<td>Neutral to unfavorable</td>
</tr>
<tr>
<td>RUNX1</td>
<td>10-15%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>IDH2 R132</td>
<td>7-16%</td>
<td>Variable</td>
</tr>
<tr>
<td>IDH2 R140 and R172</td>
<td>8-15%</td>
<td>Variable</td>
</tr>
<tr>
<td>TET2</td>
<td>8-12%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>MLL</td>
<td>5-10%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>ASXL1</td>
<td>3-19%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>FLT3 TKD</td>
<td>7%</td>
<td>Neutral</td>
</tr>
<tr>
<td>CEBPA</td>
<td>6%</td>
<td>Favorable</td>
</tr>
<tr>
<td>PTPN11</td>
<td>3%</td>
<td>Unknown</td>
</tr>
<tr>
<td>PHF6</td>
<td>2-4%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>TP53</td>
<td>2-5%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>KIT</td>
<td>2-3%</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>CBL</td>
<td>1-3%</td>
<td>Unknown</td>
</tr>
<tr>
<td>EZH2</td>
<td>1-3%</td>
<td>Unknown</td>
</tr>
<tr>
<td>JAK2</td>
<td>1%</td>
<td>Unfavorable</td>
</tr>
</tbody>
</table>
AML with mutated RUNX1

- Gene located at 21q22
- Encodes the alpha subunit of the core binding factor
- Mutation in 4-16% of AML
- More frequent in older male patients
- Frequent prior history of MDS, or prior exposure to radiation
- Immature morphology and phenotype common
- Frequently associated ASXL1, KMT2A-PTD, (FLT3-ITD), IDH1R132, and IDH2R140 and R172 mutations
- Rare CEBPA or NPM1 mutations
- Poor response to therapy with shortened survival

Proposed WHO Revisions for AML

- **AML, NOS**
 - Mostly unchanged
 - Move erythroid/myeloid type of acute erythroid leukemia to the MDS section

- **New cytogenetic subgroups**
 - Rare ones will be mentioned, but not added to the classification
 - AML with *BCR-ABL1*
 - Antigen receptor deletion
 - *BCR-ABL1* absent in background cells
 - Refine APL with *PML-RARA* fusion
Proposed WHO Revisions for AML

• New and revised mutation subgroups
 – AML with mutated RUNX1
 • Category will only include de novo cases
 • Cases arising from MDS will still be called AML-MRC
 • Cases with prior therapy will still be therapy-related AML
Proposed WHO Revisions for AML

- New and revised mutation subgroups
 - AML with \textit{RUNX1} mutation
 - AML with \textit{CEBPA} mutation will have to be heterozygous/double mutation
 - \textit{NPM1} and \textit{CEBPA}^{dm} mutations will trump multilineage dysplasia in de novo disease without MDS-related cytogenetic abnormalities other than del(9q)
Proposed WHO Revisions for AML

- Revise criteria for AML with myelodysplasia-related changes
 - Remove de novo cases with no MDS-related cytogenetic abnormalities if *NPM1* or \(\text{CEBPA}^{\text{dm}} \) mutated
 - Revise MDS-related cytogenetic abnormalities
 - Allow del(9q) only in the absence of *NPM1* and *CEBPA* mutation
MDS-related cytogenetic abnormalities

- **Complex karyotype***
- **Unbalanced abnormalities**
 - -7/del(7q)
 - -5/del(5q)/t(5q)
 - i(17q)/t(17p)
 - -13/del(13q)
 - del(11q)
 - del(12p)/t(12p)
 - del(9q)**
 - idic(X)(q13)

- **Balanced abnormalities**
 - t(11;16)(q23.3;p13.3)
 - t(3;21)(q26.2;q22.1)
 - t(1;3)(p36.3;q21.1.2)
 - t(2;11)(p21;q23.3)
 - t(5;12)(q32;p13.2)
 - t(5;7)(q32;q11.2)
 - t(5;17)(q32;p13.2)
 - t(5;10)(q32;q21)
 - t(3;5)(q25.3;q35.1)

* >3 abnormalities
** mutation of NPM1 or CEBPA trumps this abnormality
Proposed WHO Revisions for AML

• Revise criteria for AML with myelodysplasia-related changes
 – Remove de novo cases with no MDS-related cytogenetic abnormalities if $NPM1$ or $CEBPA^{dm}$ mutated
 – Revise MDS-related cytogenetic abnormalities

• Add section on familial myeloid neoplasms
Algorithmic Approach

Morphologic Review

>20% Blood or Marrow Blasts

<20% Blood or Marrow Blasts
Algorithmic Approach

- **<20% Blood or Marrow Blasts**
 - **Cytogenetics**
 - t(8;21), inv(16), t(16;16) or *PML-RARA*
 - t(5;14)
 - Normal or other abnormalities

- **AML with recurrent genetic abnormality**
- **ALL with t(5;14)**
- **Not acute leukemia**
Algorithmic Approach

- >20% Blood or Marrow Blasts
- Immunophenotype
 - Ambiguous
 - Myeloid
 - Precursor B
 - Precursor T
 - AUL
 - MPAL
 - ETP-LB
 - T-LB
Algorithmic Approach (2008)

History and Genetics

Therapy-related AML

- Hx of cytotoxic therapy
- Recurrent genetic abnormality
- Prior MDS or MDS-related cytogenetics
- Down syndrome

Myeloid proliferation of Down Syndrome

AML with recurrent genetic abnormality

- NPM1 or CEBPA mutated

AML, not otherwise specified

Morphology for multi-lineage dysplasia

- Present
- Absent

AML with myelodysplasia-related changes

- None

Myeloid
Algorithmic Approach (Proposed)

Myeloid

History and Genetics

Mutation Studies

- NPM1, CEBPAdm mutated
- RUNX1 mutated

Therapy-related AML

Myeloid proliferation of Down Syndrome

AML with myelodysplasia-related changes

- Present
- Absent

AML with recurrent genetic abnormality

AML, not otherwise specified
AML Mutation Studies
(FLT3, NPM1, CEPBA, KIT, RUNX1, DNMT3A, TET2, IDH1/2, ASXL1, WT1)

Mutated NPM1 or CEBPAdm

History of Prior Therapy

History of MDS or MDS/MPN

MDS-related CG abnormality other than del(9q)

AML with MDS-related changes

None

Other recurring CG abnormality

AML with recurrent genetic abnormality

Therapy-related AML

AML with mutated NPM1 or AML with biallelic CEPBA mutation
AML Mutation Studies
(FLT3, NPM1, CEPBA, KIT, RUNX1, DNMT3A, TET2, IDH1/2, ASXL1, WT1)

Mutated RUNX1

- History of Prior Therapy
- History of MDS or MDS/MPN
- MDS-related CG abnormality

- Therapy-related AML
- AML with MDS-related changes
- AML with recurrent genetic abnormality

- None
- Other recurring CG abnormality
- AML with mutated RUNX1

AML with MDS-related changes
AML Mutation Studies
(FLT3, NPM1, CEPBA, KIT, RUNX1, DNMT3A, TET2, IDH1/2, ASXL1, WT1)

Other mutations

Note prognostic impact, but findings do not impact classification
WHO Revisions Summary

• Few major changes
• Attempt to update the 2008 classification based on newer data
 – Addition of disease specific mutations to diagnostic criteria (i.e. \textit{CSF3R} in CNL)
 – Reduced significance of multilineage dysplasia in AML in the setting of specific mutations
• Change to the general names to MDS groups
• Impact of \textit{SF3B1} on RARS
• Return of a category of MDS with MLD and ring sideroblasts
• Move of acute erythroleukemia (erythroid/myeloid type) to MDS
• Attempt to recognize the importance of mutation studies without making the classification overly complex
• Address familial myeloid neoplasms
 – Recognition may have largest impact
Acknowledgements

- Jim Vardiman
- Jürgen Thiele
- Attilio Orazi
- Rob Hasserjian
- Kathy Foucar
- LoAnn Peterson
- Dick Brunning
- Michelle LeBeau
- Mike Borowitz
- Myeloid CAC
 - Clara Bloomfield
 - Mario Cazzola